Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502108

RESUMO

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.

2.
Front Oncol ; 11: 648528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869047

RESUMO

PURPOSE: Relative cerebral blood volume (rCBV) is the most widely used parameter derived from DSC perfusion MR imaging for predicting brain tumor aggressiveness. However, accurate rCBV estimation is challenging in enhancing glioma, because of contrast agent extravasation through a disrupted blood-brain barrier (BBB), and even for nonenhancing glioma with an intact BBB, due to an elevated steady-state contrast agent concentration in the vasculature after first passage. In this study a thorough investigation of the effects of two different leakage correction algorithms on rCBV estimation for enhancing and nonenhancing tumors was conducted. METHODS: Two datasets were used retrospectively in this study: 1. A publicly available TCIA dataset (49 patients with 35 enhancing and 14 nonenhancing glioma); 2. A dataset acquired clinically at Erasmus MC (EMC, Rotterdam, NL) (47 patients with 20 enhancing and 27 nonenhancing glial brain lesions). The leakage correction algorithms investigated in this study were: a unidirectional model-based algorithm with flux of contrast agent from the intra- to the extravascular extracellular space (EES); and a bidirectional model-based algorithm additionally including flow from EES to the intravascular space. RESULTS: In enhancing glioma, the estimated average contrast-enhanced tumor rCBV significantly (Bonferroni corrected Wilcoxon Signed Rank Test, p < 0.05) decreased across the patients when applying unidirectional and bidirectional correction: 4.00 ± 2.11 (uncorrected), 3.19 ± 1.65 (unidirectional), and 2.91 ± 1.55 (bidirectional) in TCIA dataset and 2.51 ± 1.3 (uncorrected), 1.72 ± 0.84 (unidirectional), and 1.59 ± 0.9 (bidirectional) in EMC dataset. In nonenhancing glioma, a significant but smaller difference in observed rCBV was found after application of both correction methods used in this study: 1.42 ± 0.60 (uncorrected), 1.28 ± 0.46 (unidirectional), and 1.24 ± 0.37 (bidirectional) in TCIA dataset and 0.91 ± 0.49 (uncorrected), 0.77 ± 0.37 (unidirectional), and 0.67 ± 0.34 (bidirectional) in EMC dataset. CONCLUSION: Both leakage correction algorithms were found to change rCBV estimation with BBB disruption in enhancing glioma, and to a lesser degree in nonenhancing glioma. Stronger effects were found for bidirectional leakage correction than for unidirectional leakage correction.

3.
Clin Cancer Res ; 27(9): 2459-2469, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597271

RESUMO

PURPOSE: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.


Assuntos
Atovaquona/farmacologia , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Atovaquona/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metabolismo Energético , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fator de Transcrição STAT3/metabolismo
4.
Magn Reson Imaging ; 58: 18-23, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639755

RESUMO

The purpose of this study was to compare the Infinite Cylinder and Forward Field methods of quantifying global venous oxygen saturation (Yv) in the superior sagittal sinus (SSS) from MRI phase data, and assess their applicability in systemic cerebrovascular disease.15 children with sickle cell disease (SCD) and 10 healthy age-matched controls were imaged on a 3.0 T MRI system. Anatomical and phase data around the superior sagittal sinus were acquired from a clinically available susceptibility weighted imaging sequence and converted to Yv using the Infinite Cylinder and Forward Field methods. Yv was significantly higher when calculated using the Infinite Cylinder method compared to the Forward Field method in both patients (p = 0.003) and controls (p < 0.001). A significant difference in Yv was observed between patients and controls for the Forward Field method only (p = 0.006). While various implementations of Yv quantification can be used in practice, the results can differ significantly. Simplistic models such as the Infinite Cylinder method may be easier to implement, but their dependence on broad assumptions can lead to an overestimation of Yv, and may reduce the sensitivity to pathophysiological changes in Yv.


Assuntos
Anemia Falciforme/sangue , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Oxigênio/química , Adolescente , Anemia Falciforme/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Casos e Controles , Criança , Feminino , Hematócrito , Humanos , Masculino , Oximetria
5.
Neuroimage ; 187: 128-144, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29277404

RESUMO

The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Animais , Calibragem , Volume Sanguíneo Cerebral , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular , Humanos , Processamento de Imagem Assistida por Computador/métodos , Oxigênio/metabolismo , Consumo de Oxigênio
6.
Brain Behav ; 7(11): e00811, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29201539

RESUMO

Introduction: Transcranial Doppler ultrasonography (TCD) is a clinical tool for stratifying ischemic stroke risk by identifying abnormal elevations in blood flow velocity (BFV) in the middle cerebral artery (MCA). However, TCD is not effective at screening for subtle neurologic injury such as silent cerebral infarcts. To better understand this disparity, we compared TCD measures of BFV with tissue-level cerebral blood flow (CBF) using arterial spin-labeling MRI in children with and without sickle cell disease, and correlated these measurements against clinical hematologic measures of disease severity. Methods: TCD and MRI assessment were performed in 13 pediatric sickle cell disease patients and eight age-matched controls. Using MRI measures of MCA diameter and territory weight, TCD measures of BFV in the MCA [cm/s] were converted into units of CBF [ml min-1100 g-1] for comparison. Results: There was no significant association between TCD measures of BFV in the MCA and corresponding MRI measures of CBF in patients (r = .28, p = .39) or controls (r = .10, p = .81). After conversion from BFV into units of CBF, a strong association was observed between TCD and MRI measures (r = .67, p = .017 in patients, r = .86, p = .006 in controls). While BFV in the MCA showed a lack of correlation with arterial oxygen content, an inverse association was observed for CBF measurements. Conclusions: This study demonstrates that BFV in the MCA cannot be used as a surrogate marker for tissue-level CBF in children with sickle cell disease. Therefore, TCD alone may not be sufficient for understanding and predicting subtle pathophysiology in this population, highlighting the potential clinical value of tissue-level CBF.


Assuntos
Anemia Falciforme , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética/métodos , Ultrassonografia Doppler Transcraniana/métodos , Adolescente , Anemia Falciforme/complicações , Anemia Falciforme/fisiopatologia , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Criança , Pré-Escolar , Feminino , Humanos , Infarto da Artéria Cerebral Média/diagnóstico , Infarto da Artéria Cerebral Média/etiologia , Masculino , Artéria Cerebral Média/diagnóstico por imagem , Reprodutibilidade dos Testes
7.
Neuroimage ; 146: 327-332, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27720821

RESUMO

The relationship between venous blood oxygenation and change in transverse relaxation rate (ΔR2*) plays a key role in calibrated BOLD fMRI. This relationship, defined by the parameter ß, has previously been determined using theoretical simulations and experimental measures. However, these earlier studies have been confounded by the change in venous cerebral blood volume (CBV) in response to functional tasks. This study used a double-echo gradient echo EPI scheme in conjunction with a graded isocapnic hyperoxic sequence to assess quantitatively the relationship between the fractional venous blood oxygenation (1-Yv) and transverse relaxation rate of grey matter (ΔR2⁢GM*), without inducing a change in vCBV. The results demonstrate that the relationship between ΔR2* and fractional venous oxygenation at all magnet field strengths studied was adequately described by a linear relationship. The gradient of this relationship did not increase monotonically with field strength, which may be attributed to the relative contributions of intravascular and extravascular signals which will vary with both field strength and blood oxygenation.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Adulto , Mapeamento Encefálico , Feminino , Humanos , Hipercapnia/metabolismo , Hiperóxia/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Veias , Adulto Jovem
8.
Br J Haematol ; 176(2): 280-287, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27905100

RESUMO

Overt ischaemic stroke is one of the most devastating complications in children with sickle cell disease (SCD). The compensatory response to anaemia in SCD includes an increase in cerebral blood flow (CBF) by accessing cerebrovascular dilatory reserve. Exhaustion of dilatory reserve secondary to anaemic stress may lead to cerebral ischaemia. The purpose of this study was to investigate CBF and cerebrovascular reactivity (CVR) using magnetic resonance imaging (MRI) in children with SCD and to correlate these with haematological markers of anaemia. Baseline CBF was measured using arterial spin labelling. Blood-oxygen level-dependent MRI in response to a CO2 stimulus was used to acquire CVR. In total, 28 children with SCD (23 not on any disease-modifying treatment, 5 on chronic transfusion) and 22 healthy controls were imaged using MRI. Transfusion patients were imaged at two time points to assess the effect of changes in haematocrit after a transfusion cycle. In children with SCD, CBF was significantly elevated compared to healthy controls, while CVR was significantly reduced. Both measures were significantly correlated with haematocrit. For transfusion patients, CBF decreased and CVR increased following a transfusion cycle. Lastly, a significant correlation was observed between CBF and CVR in both children with SCD and healthy controls.


Assuntos
Anemia Falciforme/fisiopatologia , Anemia/patologia , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Adolescente , Transfusão de Sangue , Criança , Dilatação , Feminino , Hematócrito , Humanos , Masculino , Marcadores de Spin
9.
J Physiol ; 594(10): 2681-9, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26847953

RESUMO

KEY POINTS: Cerebrovascular reactivity (CVR) reflects the vasodilatory reserve of cerebral resistance vessels. Normal development in children is associated with significant changes in blood pressure, cerebral blood flow (CBF) and cerebral oxygen metabolism. Therefore, it stands to reason that CVR will also undergo changes during this period. The study acquired magnetic resonance imaging measures of CVR and CBF in healthy children and young adults to trace their changes with age. We found that CVR changes in two phases, increasing with age until the mid-teens, followed by a decrease. Baseline CBF declined steadily with age. We conclude that CVR varies with age during childhood, which prompts future CVR studies involving children to take into account the effect of development. ABSTRACT: Cerebrovascular reactivity (CVR) reflects the vasculature's ability to accommodate changes in blood flow demand thereby serving as a critical imaging tool for mapping vascular reserve. Normal development is associated with extensive physiological changes in blood pressure, cerebral blood flow and cerebral metabolic rate of oxygen, all of which can affect CVR. Moreover, the evolution of these physiological parameters is most prominent during childhood. Therefore, the aim of this study was to use non-invasive magnetic resonance imaging (MRI) to characterize the developmental trajectories of CVR in healthy children and young adults, and relate them to changes in cerebral blood flow (CBF). Thirty-four healthy subjects (17 males, 17 females; age 9-30 years) underwent CVR assessment using blood oxygen level-dependent MRI in combination with a computer controlled CO2 stimulus. In addition, baseline CBF was measured with a pulsed arterial spin labelling sequence. CVR exhibited a gradual increase with age in both grey and white matter up to 14.7 years. After this break point, a negative correlation with age was detected. Baseline CBF maintained a consistent negative linear correlation across the entire age range. The significant age-dependent changes in CVR and CBF demonstrate the evolution of cerebral haemodynamics in children and should be taken into consideration. The shift in developmental trajectory of CVR from increasing to decreasing suggests that physiological factors beyond baseline CBF also influence CVR.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/tendências , Adolescente , Adulto , Fatores Etários , Encéfalo/crescimento & desenvolvimento , Criança , Feminino , Humanos , Masculino , Adulto Jovem
10.
Neuroimage ; 105: 323-31, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462687

RESUMO

The physiological effect of hyperoxia has been poorly characterize d, with studies reporting conflicting results on the role of hyperoxia as a vasoconstrictor. It is not clear whether hyperoxia is the primary contributor to vasoconstriction or whether induced changes in CO2 that commonly accompany hyperoxia are a factor. As calibrated BOLD fMRI based on hyperoxia becomes more widely used, it is essential to understand the effects of oxygen on resting cerebral physiology. This study used a RespirAct™ system to deliver a repeatable isocapnic hyperoxia stimulus to investigate the independent effect of O2 on cerebral physiology, removing any potential confounds related to altered CO2. T1-independent Phase Contrast MRI was used to demonstrate that isocapnic hyperoxia has no significant effect on carotid blood flow (normoxia 201 ± 11 ml/min, -0.3% ± 0.8% change during hyperoxia, p = 0.8), while Look Locker ASL was used to demonstrate that there is no significant change in arterial cerebral blood volume (normoxia 1.3% ± 0.4%, -0.5 ± 5% change during hyperoxia). These are in contrast to significant changes in carotid blood flow observed for hypercapnia (6.8% ± 1.5%/mm Hg CO2). In addition, magnetoencephalography provided a method to monitor the effect of isocapnic hyperoxia on neuronal oscillatory power. In response to hyperoxia, a significant focal decrease in oscillatory power was observed across the alpha, beta and low gamma bands in the occipital lobe, compared to a more global significant decrease on hypercapnia. This work suggests that isocapnic hyperoxia provides a more reliable stimulus than hypercapnia for calibrated BOLD, and that previous reports of vasoconstriction during hyperoxia probably reflect the effects of hyperoxia-induced changes in CO2. However, hyperoxia does induce changes in oscillatory power consistent with an increase in vigilance, but these changes are smaller than those observed under hypercapnia. The effect of this change in neural activity on calibrated BOLD using hyperoxia or combined hyperoxia and hypercapnia needs further investigation.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Hiperóxia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Adulto , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Neuroimage ; 101: 458-65, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25091128

RESUMO

The measurement of venous cerebral blood oxygenation (Yv) has potential applications in the study of patient groups where oxygen extraction and/or metabolism are compromised. It is also useful for fMRI studies to assess the stimulus-induced changes in Yv, particularly since basal Yv partially accounts for inter-subject variation in the haemodynamic response to a stimulus. A range of MRI-based methods of measuring Yv have been developed recently. Here, we use a method based on the change in phase in the MR image arising from the field perturbation caused by deoxygenated haemoglobin in veins. We build on the existing phase based approach (Method I), where Yv is measured in a large vein (such as the superior sagittal sinus) based on the field shift inside the vein with assumptions as to the vein's shape and orientation. We demonstrate two novel modifications which address limitations of this method. The first modification (Method II), maps the actual form of the vein, rather than assume a given shape and orientation. The second modification (Method III) uses the intra and perivascular phase change in response to a known change in Yv on hyperoxia to measure normoxic Yv in smaller veins. Method III can be applied to veins whose shape, size and orientation are not accurately known, thus allowing more localised measures of venous oxygenation. Results demonstrate that the use of an overly fine spatial filter caused an overestimation in Yv for Method I, whilst the measurement of Yv using Method II was less sensitive to this bias, giving Yv = 0.62 ± 0.03. Method III was applied to mapping of Yv in local veins across the brain, yielding a distribution of values with a mode of Yv = 0.661 ± 0.008.


Assuntos
Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Adulto , Encéfalo/irrigação sanguínea , Feminino , Humanos , Masculino , Adulto Jovem
12.
Neuroimage ; 58(4): 1034-43, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21762783

RESUMO

The effect of hypercapnia (an increase in CO(2) concentration in the blood) on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) haemodynamic response has been well characterised and is commonly used for BOLD calibration. However, relatively little is known of the effect of hypercapnia on the electrical brain processes that underlie the BOLD response. Here, we investigate the effect of hypercapnia on resting and stimulus induced changes in neural oscillations using a feed-forward low gas flow system to deliver a reliable and repeatable level of hypercapnia. Magnetoencephalography (MEG) is used in conjunction with beamformer source localisation algorithms to non-invasively image changes in oscillatory amplitude. At rest, we find robust oscillatory power loss in the alpha (8Hz-13Hz), beta (13Hz-30Hz) and low gamma (30Hz-50Hz) frequency bands in response to hypercapnia. Further, we show that the spatial signature of this power loss differs across frequency bands, with the largest effect being observed for the beta band in sensorimotor cortices. We also measure changes in oscillatory activity induced by visual and motor events, and the effect of hypercapnia on these changes; whilst the percentage change in oscillatory activity on activation was largely unaffected by hypercapnia, the absolute change in oscillatory amplitude differed between normocapnia and hypercapnia. This work supports invasive recordings made in animals, and the results have potential implications for calibrated BOLD studies.


Assuntos
Hipercapnia/patologia , Magnetoencefalografia , Descanso/fisiologia , Administração por Inalação , Adulto , Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Mapeamento Encefálico , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/sangue , Dióxido de Carbono/farmacologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Estimulação Luminosa , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...